Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient and Uncertainty Enhanced Sequential Sampling for Global Fit (2310.00110v1)

Published 29 Sep 2023 in stat.ML and cs.LG

Abstract: Surrogate models based on machine learning methods have become an important part of modern engineering to replace costly computer simulations. The data used for creating a surrogate model are essential for the model accuracy and often restricted due to cost and time constraints. Adaptive sampling strategies have been shown to reduce the number of samples needed to create an accurate model. This paper proposes a new sampling strategy for global fit called Gradient and Uncertainty Enhanced Sequential Sampling (GUESS). The acquisition function uses two terms: the predictive posterior uncertainty of the surrogate model for exploration of unseen regions and a weighted approximation of the second and higher-order Taylor expansion values for exploitation. Although various sampling strategies have been proposed so far, the selection of a suitable method is not trivial. Therefore, we compared our proposed strategy to 9 adaptive sampling strategies for global surrogate modeling, based on 26 different 1 to 8-dimensional deterministic benchmarks functions. Results show that GUESS achieved on average the highest sample efficiency compared to other surrogate-based strategies on the tested examples. An ablation study considering the behavior of GUESS in higher dimensions and the importance of surrogate choice is also presented.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. doi:10.1038/s42254-021-00314-5.
  2. doi:10.1038/s42256-021-00302-5.
  3. arXiv:2010.08895.
  4. doi:10.1155/2019/2859429.
  5. doi:10.1109/CoASE.2015.7294310.
  6. doi:10.48550/ARXIV.1309.6835.
  7. doi:10.48550/arXiv.1903.08114.
  8. arXiv:1710.06202.
  9. doi:10.1162/neco.1992.4.3.448.
  10. doi:10.1016/S0893-6080(00)00098-8.
  11. doi:10.1214/088342304000000099.
  12. doi:10.1214/ss/1177012413.
  13. arXiv:1268522, doi:10.2307/1268522.
  14. doi:10.7712/100016.2038.7644.
  15. doi:10.1016/S0266-8920(97)00013-1.
  16. doi:10.1007/BF01099263.
  17. doi:10.1023/A:1008306431147.
  18. D. G. Krige, A statistical approach to some basic mine valuation problems on the Witwatersrand (1951).
  19. doi:10.1137/090761811.
  20. doi:10.1115/1.4031905.
  21. doi:10.1016/j.compchemeng.2017.05.025.
  22. doi:10.1007/s00158-020-02543-1.
  23. doi:10.1007/s00158-021-03016-9.
  24. doi:10.1016/j.cja.2019.12.026.
  25. doi:10.1002/2017WR021622.
  26. doi:10.1016/j.compchemeng.2014.05.021.
  27. doi:10.1007/s00158-017-1739-8.
  28. doi:10.1007/s11831-020-09474-6.
  29. doi:10.1016/j.cma.2022.115671.
  30. doi:10.1016/j.jcp.2022.111868.
  31. doi:10.1016/j.jcp.2021.110444.
  32. doi:10.2514/1.J051607.
  33. doi:10.1007/978-1-4612-1494-6.
  34. R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection 14 (1995).
  35. doi:10.1162/08997660151134343.
  36. doi:10.1198/TECH.2009.08040.
  37. doi:10.7717/peerj-cs.623.
  38. doi:10.1016/B978-0-12-416702-5.50009-0.
  39. doi:10.1007/BF00977785.
  40. doi:10.1145/3582078.
  41. doi:10.1002/9780470725184.
  42. arXiv:1301.1942, doi:10.48550/arXiv.1301.1942.
  43. J. Shlens, A Tutorial on Principal Component Analysis (2014). arXiv:1404.1100, doi:10.48550/arXiv.1404.1100.
  44. doi:10.1007/BFb0020217.
  45. doi:10.48550/arXiv.1412.6980.
  46. arXiv:2007.06823.
  47. doi:10.5281/ZENODO.5565057.
  48. doi:10.1038/s41592-019-0686-2.
  49. doi:10.1137/0916069.
  50. doi:10.21105/joss.02338.
  51. doi:10.1016/j.asoc.2021.107807.
  52. arXiv:1007.4580.
  53. doi:10.1080/03610918.2012.720743.
  54. doi:10.2139/ssrn.926132.
  55. doi:10.1147/rd.165.0504.
  56. doi:10.1016/j.amc.2013.11.050.
  57. doi:10.1109/ISUMA.1990.151285.
  58. doi:10.1002/nav.3800200316.
  59. doi:10.1093/comjnl/3.3.175.
Citations (4)

Summary

We haven't generated a summary for this paper yet.