Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 Pro
2000 character limit reached

Assessing the Performance of an Adaptive Multi-Fidelity Gaussian Process with Noisy Training Data: A Statistical Analysis (2107.02455v1)

Published 6 Jul 2021 in math.OC

Abstract: Despite the increased computational resources, the simulation-based design optimization (SBDO) procedure can be very expensive from a computational viewpoint, especially if high-fidelity solvers are required. Multi-fidelity metamodels have been successfully applied to reduce the computational cost of the SBDO process. In this context, the paper presents the performance assessment of an adaptive multi-fidelity metamodel based on a Gaussian process regression (MF-GPR) for noisy data. The MF-GPR is developed to: (i) manage an arbitrary number of fidelity levels, (ii) deal with objective function evaluations affected by noise, and (iii) improve its fitting accuracy by adaptive sampling. Multi-fidelity is achieved by bridging a low-fidelity metamodel with metamodels of the error between successive fidelity levels. The MF-GPR handles the numerical noise through regression. The adaptive sampling method is based on the maximum prediction uncertainty and includes rules to automatically select the fidelity to sample. The MF-GPR performance are assessed on a set of five analytical benchmark problems affected by noisy objective function evaluations. Since the noise introduces randomness in the evaluation of the objective function, a statistical analysis approach is adopted to assess the performance and the robustness of the MF-GPR. The paper discusses the efficiency and effectiveness of the MF-GPR in globally approximating the objective function and identifying the global minimum. One, two, and three fidelity levels are used. The results of the statistical analysis show that the use of three fidelity levels achieves a more accurate global representation of the noise-free objective function compared to the use of one or two fidelities.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.