Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficiently Sampling Functions from Gaussian Process Posteriors (2002.09309v4)

Published 21 Feb 2020 in stat.ML, cs.LG, and stat.CO

Abstract: Gaussian processes are the gold standard for many real-world modeling problems, especially in cases where a model's success hinges upon its ability to faithfully represent predictive uncertainty. These problems typically exist as parts of larger frameworks, wherein quantities of interest are ultimately defined by integrating over posterior distributions. These quantities are frequently intractable, motivating the use of Monte Carlo methods. Despite substantial progress in scaling up Gaussian processes to large training sets, methods for accurately generating draws from their posterior distributions still scale cubically in the number of test locations. We identify a decomposition of Gaussian processes that naturally lends itself to scalable sampling by separating out the prior from the data. Building off of this factorization, we propose an easy-to-use and general-purpose approach for fast posterior sampling, which seamlessly pairs with sparse approximations to afford scalability both during training and at test time. In a series of experiments designed to test competing sampling schemes' statistical properties and practical ramifications, we demonstrate how decoupled sample paths accurately represent Gaussian process posteriors at a fraction of the usual cost.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. James T. Wilson (8 papers)
  2. Viacheslav Borovitskiy (21 papers)
  3. Alexander Terenin (34 papers)
  4. Peter Mostowsky (5 papers)
  5. Marc Peter Deisenroth (73 papers)
Citations (150)

Summary

We haven't generated a summary for this paper yet.