Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Feature Engineering is Not Dead: Reviving Classical Machine Learning with Entropy, HOG, and LBP Feature Fusion for Image Classification (2507.13772v1)

Published 18 Jul 2025 in cs.CV and cs.LG

Abstract: Feature engineering continues to play a critical role in image classification, particularly when interpretability and computational efficiency are prioritized over deep learning models with millions of parameters. In this study, we revisit classical machine learning based image classification through a novel approach centered on Permutation Entropy (PE), a robust and computationally lightweight measure traditionally used in time series analysis but rarely applied to image data. We extend PE to two-dimensional images and propose a multiscale, multi-orientation entropy-based feature extraction approach that characterizes spatial order and complexity along rows, columns, diagonals, anti-diagonals, and local patches of the image. To enhance the discriminatory power of the entropy features, we integrate two classic image descriptors: the Histogram of Oriented Gradients (HOG) to capture shape and edge structure, and Local Binary Patterns (LBP) to encode micro-texture of an image. The resulting hand-crafted feature set, comprising of 780 dimensions, is used to train Support Vector Machine (SVM) classifiers optimized through grid search. The proposed approach is evaluated on multiple benchmark datasets, including Fashion-MNIST, KMNIST, EMNIST, and CIFAR-10, where it delivers competitive classification performance without relying on deep architectures. Our results demonstrate that the fusion of PE with HOG and LBP provides a compact, interpretable, and effective alternative to computationally expensive and limited interpretable deep learning models. This shows a potential of entropy-based descriptors in image classification and contributes a lightweight and generalizable solution to interpretable machine learning in image classification and computer vision.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.