Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Entropy-based Guidance of Deep Neural Networks for Accelerated Convergence and Improved Performance (2308.14938v2)

Published 28 Aug 2023 in cs.CV, cs.LG, and eess.IV

Abstract: Neural networks have dramatically increased our capacity to learn from large, high-dimensional datasets across innumerable disciplines. However, their decisions are not easily interpretable, their computational costs are high, and building and training them are not straightforward processes. To add structure to these efforts, we derive new mathematical results to efficiently measure the changes in entropy as fully-connected and convolutional neural networks process data. By measuring the change in entropy as networks process data effectively, patterns critical to a well-performing network can be visualized and identified. Entropy-based loss terms are developed to improve dense and convolutional model accuracy and efficiency by promoting the ideal entropy patterns. Experiments in image compression, image classification, and image segmentation on benchmark datasets demonstrate these losses guide neural networks to learn rich latent data representations in fewer dimensions, converge in fewer training epochs, and achieve higher accuracy.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com