Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An LBP-HOG Descriptor Based on Matrix Projection For Mammogram Classification (1904.00187v4)

Published 30 Mar 2019 in cs.CV

Abstract: In image based feature descriptor design, local information from image patches are extracted using iterative scanning operations which cause high computational costs. In order to avoid such scanning operations, we present matrix multiplication based local feature descriptors, namely a Matrix projection based Local Binary Pattern (M-LBP) descriptor and a Matrix projection based Histogram of Oriented Gradients (M-HOG) descriptor. Additionally, an integrated formulation of M-LBP and M-HOG (M-LBP-HOG) is also proposed to perform the two descriptors together in a single step. The proposed descriptors are evaluated using a publicly available mammogram database. The results show promising performances in terms of classification accuracy and computational efficiency.

Citations (7)

Summary

We haven't generated a summary for this paper yet.