Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CIFAR-10 Image Classification Using Feature Ensembles (2002.03846v2)

Published 7 Feb 2020 in cs.CV, cs.LG, and stat.ML

Abstract: Image classification requires the generation of features capable of detecting image patterns informative of group identity. The objective of this study was to classify images from the public CIFAR-10 image dataset by leveraging combinations of disparate image feature sources from both manual and deep learning approaches. Histogram of oriented gradients (HOG) and pixel intensities successfully inform classification (53% and 59% classification accuracy, respectively), yet there is much room for improvement. VGG16 with ImageNet trained weights and a CIFAR-10 optimized model (CIFAR-VGG) further improve upon image classification (60% and 93.43% accuracy, respectively). We further improved classification by utilizing transfer learning to re-establish optimal network weights for VGG16 (TL-VGG) and Inception ResNet v2 (TL-Inception) resulting in significant performance increases (85% and 90.74%, respectively), yet fail to surpass CIFAR-VGG. We hypothesized that if each generated feature set obtained some unique insight into the classification problem, then combining these features would result in greater classification accuracy, surpassing that of CIFAR-VGG. Upon selection of the top 1000 principal components from TL-VGG, TL-Inception, HOG, pixel intensities, and CIFAR-VGG, we achieved testing accuracy of 94.6%, lending support to our hypothesis.

Citations (15)

Summary

We haven't generated a summary for this paper yet.