Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

SetupBench: Assessing Software Engineering Agents' Ability to Bootstrap Development Environments (2507.09063v1)

Published 11 Jul 2025 in cs.SE, cs.AI, and cs.LG

Abstract: Modern LLM agents promise end to end assistance with real-world software tasks, yet existing benchmarks evaluate LLM agents almost exclusively in pre-baked environments where every dependency is pre-installed. To fill this gap, we introduce SetupBench, a 93 instance benchmark that isolates the environment-bootstrap skill: starting from a bare Linux sandbox, an agent must install packages, resolve dependency conflicts, initialize databases, and configure background services. Our tasks span seven language ecosystems, five database engines, and multi-service orchestration scenarios, each accompanies by a natural language problem statement and a deterministic success command. Through evaluation of OpenHands, a state-of-the-art coding agent, we find low success rates across task categories, with particular challenges in repository setup (38.9-57.4%) and local database configuration (20.0-53.3%). Our analysis reveals systematic failure modes including incomplete development tooling installation, hallucinated task constraints, and non-persistent environment modifications that break agent-human collaboration workflows. We identify substantial inefficiencies in agent exploration strategies, with 38-89% of actions being unnecessary compared to optimal human behavior. These findings highlight gaps in current agents' practical environment-bootstrap capabilities. By targeting this critical yet under-evaluated capability, SetupBench provides a rigorous yard-stick for the next generation of software developer agents aiming to solve end to end real-wold tasks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.