Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Relational reasoning and inductive bias in transformers trained on a transitive inference task (2506.04289v1)

Published 4 Jun 2025 in cs.LG and q-bio.NC

Abstract: Transformer-based models have demonstrated remarkable reasoning abilities, but the mechanisms underlying relational reasoning in different learning regimes remain poorly understood. In this work, we investigate how transformers perform a classic relational reasoning task from the Psychology literature, \textit{transitive inference}, which requires inference about indirectly related items by integrating information across observed adjacent item pairs (e.g., if A>B and B>C, then A>C). We compare transitive inference behavior across two distinct learning regimes: in-weights learning (IWL), where models store information in network parameters, and in-context learning (ICL), where models flexibly utilize information presented within the input sequence. Our findings reveal that IWL naturally induces a generalization bias towards transitive inference, despite being trained only on adjacent items, whereas ICL models trained solely on adjacent items do not generalize transitively. Mechanistic analysis shows that ICL models develop induction circuits that implement a simple match-and-copy strategy that performs well at relating adjacent pairs, but does not encoding hierarchical relationships among indirectly related items. Interestingly, when pre-trained on in-context linear regression tasks, transformers successfully exhibit in-context generalizable transitive inference. Moreover, like IWL, they display both \textit{symbolic distance} and \textit{terminal item effects} characteristic of human and animal performance, without forming induction circuits. These results suggest that pre-training on tasks with underlying structure promotes the development of representations that can scaffold in-context relational reasoning.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube