Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
53 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

GeoMaNO: Geometric Mamba Neural Operator for Partial Differential Equations (2505.12020v1)

Published 17 May 2025 in cs.LG and cs.AI

Abstract: The neural operator (NO) framework has emerged as a powerful tool for solving partial differential equations (PDEs). Recent NOs are dominated by the Transformer architecture, which offers NOs the capability to capture long-range dependencies in PDE dynamics. However, existing Transformer-based NOs suffer from quadratic complexity, lack geometric rigor, and thus suffer from sub-optimal performance on regular grids. As a remedy, we propose the Geometric Mamba Neural Operator (GeoMaNO) framework, which empowers NOs with Mamba's modeling capability, linear complexity, plus geometric rigor. We evaluate GeoMaNO's performance on multiple standard and popularly employed PDE benchmarks, spanning from Darcy flow problems to Navier-Stokes problems. GeoMaNO improves existing baselines in solution operator approximation by as much as 58.9%.

Summary

We haven't generated a summary for this paper yet.