Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 104 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Enhancing Math Learning in an LMS Using AI-Driven Question Recommendations (2504.14098v1)

Published 18 Apr 2025 in cs.LG, cs.AI, cs.CY, and cs.IR

Abstract: This paper presents an AI-driven approach to enhance math learning in a modern Learning Management System (LMS) by recommending similar math questions. Deep embeddings for math questions are generated using Meta's Llama-3.2-11B-Vision-Instruct model, and three recommendation methods-cosine similarity, Self-Organizing Maps (SOM), and Gaussian Mixture Models (GMM)-are applied to identify similar questions. User interaction data, including session durations, response times, and correctness, are used to evaluate the methods. Our findings suggest that while cosine similarity produces nearly identical question matches, SOM yields higher user satisfaction whereas GMM generally underperforms, indicating that introducing variety to a certain degree may enhance engagement and thereby potential learning outcomes until variety is no longer balanced reasonably, which our data about the implementations of all three methods demonstrate.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)