Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Active Learning with a Noisy Annotator (2504.04506v1)

Published 6 Apr 2025 in cs.LG and cs.CV

Abstract: Active Learning (AL) aims to reduce annotation costs by strategically selecting the most informative samples for labeling. However, most active learning methods struggle in the low-budget regime where only a few labeled examples are available. This issue becomes even more pronounced when annotators provide noisy labels. A common AL approach for the low- and mid-budget regimes focuses on maximizing the coverage of the labeled set across the entire dataset. We propose a novel framework called Noise-Aware Active Sampling (NAS) that extends existing greedy, coverage-based active learning strategies to handle noisy annotations. NAS identifies regions that remain uncovered due to the selection of noisy representatives and enables resampling from these areas. We introduce a simple yet effective noise filtering approach suitable for the low-budget regime, which leverages the inner mechanism of NAS and can be applied for noise filtering before model training. On multiple computer vision benchmarks, including CIFAR100 and ImageNet subsets, NAS significantly improves performance for standard active learning methods across different noise types and rates.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube