Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DCoM: Active Learning for All Learners (2407.01804v2)

Published 1 Jul 2024 in cs.LG

Abstract: Deep Active Learning (AL) techniques can be effective in reducing annotation costs for training deep models. However, their effectiveness in low- and high-budget scenarios seems to require different strategies, and achieving optimal results across varying budget scenarios remains a challenge. In this study, we introduce Dynamic Coverage & Margin mix (DCoM), a novel active learning approach designed to bridge this gap. Unlike existing strategies, DCoM dynamically adjusts its strategy, considering the competence of the current model. Through theoretical analysis and empirical evaluations on diverse datasets, including challenging computer vision tasks, we demonstrate DCoM's ability to overcome the cold start problem and consistently improve results across different budgetary constraints. Thus DCoM achieves state-of-the-art performance in both low- and high-budget regimes.

Summary

We haven't generated a summary for this paper yet.