Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Simple Baseline for Low-Budget Active Learning (2110.12033v2)

Published 22 Oct 2021 in cs.CV and cs.LG

Abstract: Active learning focuses on choosing a subset of unlabeled data to be labeled. However, most such methods assume that a large subset of the data can be annotated. We are interested in low-budget active learning where only a small subset (e.g., 0.2% of ImageNet) can be annotated. Instead of proposing a new query strategy to iteratively sample batches of unlabeled data given an initial pool, we learn rich features by an off-the-shelf self-supervised learning method only once, and then study the effectiveness of different sampling strategies given a low labeling budget on a variety of datasets including ImageNet. We show that although the state-of-the-art active learning methods work well given a large labeling budget, a simple K-means clustering algorithm can outperform them on low budgets. We believe this method can be used as a simple baseline for low-budget active learning on image classification. Code is available at: https://github.com/UCDvision/low-budget-al

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Kossar Pourahmadi (4 papers)
  2. Parsa Nooralinejad (7 papers)
  3. Hamed Pirsiavash (50 papers)
Citations (20)
Github Logo Streamline Icon: https://streamlinehq.com