Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Exploiting Context for Robustness to Label Noise in Active Learning (2010.09066v1)

Published 18 Oct 2020 in cs.CV and cs.LG

Abstract: Several works in computer vision have demonstrated the effectiveness of active learning for adapting the recognition model when new unlabeled data becomes available. Most of these works consider that labels obtained from the annotator are correct. However, in a practical scenario, as the quality of the labels depends on the annotator, some of the labels might be wrong, which results in degraded recognition performance. In this paper, we address the problems of i) how a system can identify which of the queried labels are wrong and ii) how a multi-class active learning system can be adapted to minimize the negative impact of label noise. Towards solving the problems, we propose a noisy label filtering based learning approach where the inter-relationship (context) that is quite common in natural data is utilized to detect the wrong labels. We construct a graphical representation of the unlabeled data to encode these relationships and obtain new beliefs on the graph when noisy labels are available. Comparing the new beliefs with the prior relational information, we generate a dissimilarity score to detect the incorrect labels and update the recognition model with correct labels which result in better recognition performance. This is demonstrated in three different applications: scene classification, activity classification, and document classification.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.