Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A thorough benchmark of automatic text classification: From traditional approaches to large language models (2504.01930v1)

Published 2 Apr 2025 in cs.CL and cs.AI

Abstract: Automatic text classification (ATC) has experienced remarkable advancements in the past decade, best exemplified by recent small and LLMs (SLMs and LLMs), leveraged by Transformer architectures. Despite recent effectiveness improvements, a comprehensive cost-benefit analysis investigating whether the effectiveness gains of these recent approaches compensate their much higher costs when compared to more traditional text classification approaches such as SVMs and Logistic Regression is still missing in the literature. In this context, this work's main contributions are twofold: (i) we provide a scientifically sound comparative analysis of the cost-benefit of twelve traditional and recent ATC solutions including five open LLMs, and (ii) a large benchmark comprising {22 datasets}, including sentiment analysis and topic classification, with their (train-validation-test) partitions based on folded cross-validation procedures, along with documentation, and code. The release of code, data, and documentation enables the community to replicate experiments and advance the field in a more scientifically sound manner. Our comparative experimental results indicate that LLMs outperform traditional approaches (up to 26%-7.1% on average) and SLMs (up to 4.9%-1.9% on average) in terms of effectiveness. However, LLMs incur significantly higher computational costs due to fine-tuning, being, on average 590x and 8.5x slower than traditional methods and SLMs, respectively. Results suggests the following recommendations: (1) LLMs for applications that require the best possible effectiveness and can afford the costs; (2) traditional methods such as Logistic Regression and SVM for resource-limited applications or those that cannot afford the cost of tuning large LLMs; and (3) SLMs like Roberta for near-optimal effectiveness-efficiency trade-off.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube