Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
51 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An energy-based comparative analysis of common approaches to text classification in the Legal domain (2311.01256v2)

Published 2 Nov 2023 in cs.CL, cs.AI, cs.LG, and cs.PF

Abstract: Most Machine Learning research evaluates the best solutions in terms of performance. However, in the race for the best performing model, many important aspects are often overlooked when, on the contrary, they should be carefully considered. In fact, sometimes the gaps in performance between different approaches are neglectable, whereas factors such as production costs, energy consumption, and carbon footprint must take into consideration. LLMs are extensively adopted to address NLP problems in academia and industry. In this work, we present a detailed quantitative comparison of LLM and traditional approaches (e.g. SVM) on the LexGLUE benchmark, which takes into account both performance (standard indices) and alternative metrics such as timing, power consumption and cost, in a word: the carbon-footprint. In our analysis, we considered the prototyping phase (model selection by training-validation-test iterations) and in-production phases separately, since they follow different implementation procedures and also require different resources. The results indicate that very often, the simplest algorithms achieve performance very close to that of large LLMs but with very low power consumption and lower resource demands. The results obtained could suggest companies to include additional evaluations in the choice of Machine Learning (ML) solutions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Sinan Gultekin (1 paper)
  2. Achille Globo (4 papers)
  3. Andrea Zugarini (22 papers)
  4. Marco Ernandes (5 papers)
  5. Leonardo Rigutini (16 papers)
Citations (1)