Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

CIMR-V: An End-to-End SRAM-based CIM Accelerator with RISC-V for AI Edge Device (2503.22072v1)

Published 28 Mar 2025 in cs.AR

Abstract: Computing-in-memory (CIM) is renowned in deep learning due to its high energy efficiency resulting from highly parallel computing with minimal data movement. However, current SRAM-based CIM designs suffer from long latency for loading weight or feature maps from DRAM for large AI models. Moreover, previous SRAM-based CIM architectures lack end-to-end model inference. To address these issues, this paper proposes CIMR-V, an end-to-end CIM accelerator with RISC-V that incorporates CIM layer fusion, convolution/max pooling pipeline, and weight fusion, resulting in an 85.14\% reduction in latency for the keyword spotting model. Furthermore, the proposed CIM-type instructions facilitate end-to-end AI model inference and full stack flow, effectively synergizing the high energy efficiency of CIM and the high programmability of RISC-V. Implemented using TSMC 28nm technology, the proposed design achieves an energy efficiency of 3707.84 TOPS/W and 26.21 TOPS at 50 MHz.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.