Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
53 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Spatial-RAG: Spatial Retrieval Augmented Generation for Real-World Geospatial Reasoning Questions (2502.18470v5)

Published 4 Feb 2025 in cs.IR, cs.ET, and cs.LG

Abstract: Answering real-world geospatial questions--such as finding restaurants along a travel route or amenities near a landmark--requires reasoning over both geographic relationships and semantic user intent. However, existing LLMs lack spatial computing capabilities and access to up-to-date, ubiquitous real-world geospatial data, while traditional geospatial systems fall short in interpreting natural language. To bridge this gap, we introduce Spatial-RAG, a Retrieval-Augmented Generation (RAG) framework designed for geospatial question answering. Spatial-RAG integrates structured spatial databases with LLMs via a hybrid spatial retriever that combines sparse spatial filtering and dense semantic matching. It formulates the answering process as a multi-objective optimization over spatial and semantic relevance, identifying Pareto-optimal candidates and dynamically selecting the best response based on user intent. Experiments across multiple tourism and map-based QA datasets show that Spatial-RAG significantly improves accuracy, precision, and ranking performance over strong baselines.

Summary

We haven't generated a summary for this paper yet.