Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
127 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
53 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Aligning Compound AI Systems via System-level DPO (2502.17721v2)

Published 24 Feb 2025 in cs.LG, cs.AI, and cs.MA

Abstract: Compound AI systems, comprising multiple interacting components such as LLMs, foundation models, and external tools, have demonstrated remarkable improvements compared to single models in various tasks. To ensure their effective deployment in real-world applications, aligning these systems with human preferences is crucial. However, aligning the compound system via policy optimization, unlike the alignment of a single model, is challenging for two main reasons: (i) non-differentiable interactions between components make end-to-end gradient-based optimization method inapplicable, and (ii) system-level preferences cannot be directly transformed into component-level preferences. To address these challenges, we first formulate compound AI systems as Directed Acyclic Graphs (DAGs), explicitly modeling both component interactions and the associated data flows. Building on this formulation, we introduce $\textbf{SysDPO}$, a framework that extends Direct Preference Optimization (DPO) to enable joint system-level alignment. We propose two variants, SysDPO-Direct and SysDPO-Sampling, tailored for scenarios depending on whether we construct a system-specific preference dataset. We empirically demonstrate the effectiveness of our approach across two applications: the joint alignment of a LLM and a diffusion model, and the joint alignment of an LLM collaboration system.

Summary

We haven't generated a summary for this paper yet.