Image Segmentation with transformers: An Overview, Challenges and Future (2501.09372v1)
Abstract: Image segmentation, a key task in computer vision, has traditionally relied on convolutional neural networks (CNNs), yet these models struggle with capturing complex spatial dependencies, objects with varying scales, need for manually crafted architecture components and contextual information. This paper explores the shortcomings of CNN-based models and the shift towards transformer architectures -to overcome those limitations. This work reviews state-of-the-art transformer-based segmentation models, addressing segmentation-specific challenges and their solutions. The paper discusses current challenges in transformer-based segmentation and outlines promising future trends, such as lightweight architectures and enhanced data efficiency. This survey serves as a guide for understanding the impact of transformers in advancing segmentation capabilities and overcoming the limitations of traditional models.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.