Papers
Topics
Authors
Recent
2000 character limit reached

Exploring Secure Machine Learning Through Payload Injection and FGSM Attacks on ResNet-50 (2501.02147v2)

Published 4 Jan 2025 in cs.CR and cs.LG

Abstract: This paper investigates the resilience of a ResNet-50 image classification model under two prominent security threats: Fast Gradient Sign Method (FGSM) adversarial attacks and malicious payload injection. Initially, the model attains a 53.33% accuracy on clean images. When subjected to FGSM perturbations, its overall accuracy remains unchanged; however, the model's confidence in incorrect predictions notably increases. Concurrently, a payload injection scheme is successfully executed in 93.33% of the tested samples, revealing how stealthy attacks can manipulate model predictions without degrading visual quality. These findings underscore the vulnerability of even high-performing neural networks and highlight the urgency of developing more robust defense mechanisms for security-critical applications.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.