Papers
Topics
Authors
Recent
2000 character limit reached

Robust Image Classification: Defensive Strategies against FGSM and PGD Adversarial Attacks (2408.13274v1)

Published 20 Aug 2024 in cs.CR and cs.CV

Abstract: Adversarial attacks, particularly the Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD) pose significant threats to the robustness of deep learning models in image classification. This paper explores and refines defense mechanisms against these attacks to enhance the resilience of neural networks. We employ a combination of adversarial training and innovative preprocessing techniques, aiming to mitigate the impact of adversarial perturbations. Our methodology involves modifying input data before classification and investigating different model architectures and training strategies. Through rigorous evaluation of benchmark datasets, we demonstrate the effectiveness of our approach in defending against FGSM and PGD attacks. Our results show substantial improvements in model robustness compared to baseline methods, highlighting the potential of our defense strategies in real-world applications. This study contributes to the ongoing efforts to develop secure and reliable machine learning systems, offering practical insights and paving the way for future research in adversarial defense. By bridging theoretical advancements and practical implementation, we aim to enhance the trustworthiness of AI applications in safety-critical domains.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.