Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TensorShield: Tensor-based Defense Against Adversarial Attacks on Images (2002.10252v1)

Published 18 Feb 2020 in cs.LG, cs.CR, cs.CV, and stat.ML

Abstract: Recent studies have demonstrated that machine learning approaches like deep neural networks (DNNs) are easily fooled by adversarial attacks. Subtle and imperceptible perturbations of the data are able to change the result of deep neural networks. Leveraging vulnerable machine learning methods raises many concerns especially in domains where security is an important factor. Therefore, it is crucial to design defense mechanisms against adversarial attacks. For the task of image classification, unnoticeable perturbations mostly occur in the high-frequency spectrum of the image. In this paper, we utilize tensor decomposition techniques as a preprocessing step to find a low-rank approximation of images which can significantly discard high-frequency perturbations. Recently a defense framework called Shield could "vaccinate" Convolutional Neural Networks (CNN) against adversarial examples by performing random-quality JPEG compressions on local patches of images on the ImageNet dataset. Our tensor-based defense mechanism outperforms the SLQ method from Shield by 14% against FastGradient Descent (FGSM) adversarial attacks, while maintaining comparable speed.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Negin Entezari (2 papers)
  2. Evangelos E. Papalexakis (49 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.