Papers
Topics
Authors
Recent
2000 character limit reached

Multi-modal, Multi-task, Multi-criteria Automatic Evaluation with Vision Language Models (2412.14613v2)

Published 19 Dec 2024 in cs.CL, cs.AI, and cs.CV

Abstract: Vision-LLMs (VLMs) have shown impressive abilities across a range of multi-modal tasks. However, existing metrics for evaluating the quality of text generated by VLMs typically focus on an overall evaluation for a specific task, such as image captioning. While the overall evaluation is essential for any task, the criteria prioritized can differ depending on the task, making it challenging for current metrics to adapt to multi-task scenarios. To address this limitation, we propose HarmonicEval, a reference-free comprehensive evaluation metric that aggregates criterion-wise scores to produce the overall score in a bottom-up manner. Furthermore, we construct the Multi-task Multi-criteria Human Evaluation (MMHE) dataset, which comprises 18,000 expert human judgments across four multi-modal tasks. Our experiments demonstrate that HarmonicEval achieves higher correlations with human judgments than conventional metrics while providing numerical scores for each criterion.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 16 likes about this paper.