Papers
Topics
Authors
Recent
2000 character limit reached

CitaLaw: Enhancing LLM with Citations in Legal Domain (2412.14556v2)

Published 19 Dec 2024 in cs.CL

Abstract: In this paper, we propose CitaLaw, the first benchmark designed to evaluate LLMs' ability to produce legally sound responses with appropriate citations. CitaLaw features a diverse set of legal questions for both laypersons and practitioners, paired with a comprehensive corpus of law articles and precedent cases as a reference pool. This framework enables LLM-based systems to retrieve supporting citations from the reference corpus and align these citations with the corresponding sentences in their responses. Moreover, we introduce syllogism-inspired evaluation methods to assess the legal alignment between retrieved references and LLM-generated responses, as well as their consistency with user questions. Extensive experiments on 2 open-domain and 7 legal-specific LLMs demonstrate that integrating legal references substantially enhances response quality. Furthermore, our proposed syllogism-based evaluation method exhibits strong agreement with human judgments.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.