Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A novel approach to differential expression analysis of co-occurrence networks for small-sampled microbiome data (2412.03744v1)

Published 4 Dec 2024 in q-bio.QM

Abstract: Graph-based machine learning methods are useful tools in the identification and prediction of variation in genetic data. In particular, the comprehension of phenotypic effects at the cellular level is an accelerating research area in pharmacogenomics. In this article, a novel graph theoretic approach is proposed to infer a co-occurrence network from 16S microbiome data. The approach is specialised to handle datasets containing a small number of samples. Small datasets exacerbate the significant challenges faced by biological data, which exhibit properties such as sparsity, compositionality, and complexity of interactions. Methodologies are also proposed to enrich and statistically filter the inferred networks. The utility of the proposed method lies in that it extracts an informative network from small sampled data that is not only feature-rich, but also biologically meaningful and statistically significant. Although specialised for small data sets, which are abundant, it can be generally applied to any small-sampled dataset, and can also be extended to integrate multi-omics data. The proposed methodology is tested on a data set of chickens vaccinated against and challenged by the protozoan parasite Eimeria tenella. The raw genetic reads are processed, and networks inferred to describe the ecosystems of the chicken intestines under three different stages of disease progression. Analysis of the expression of network features derive biologically intuitive conclusions from purely statistical methods. For example, there is a clear evolution in the distribution of node features in line with the progression of the disease. The distributions also reveal clusters of species interacting mutualistically and parasitically, as expected. Moreover, a specific sub-network is found to persist through all experimental conditions, representative of a persistent microbiome.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube