Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Combining Compositional Data Sets Introduces Error in Covariance Network Reconstruction (2311.04357v2)

Published 7 Nov 2023 in q-bio.QM and q-bio.PE

Abstract: Microbial communities are diverse biological systems that include taxa from across multiple kingdoms of life. Notably, interactions between bacteria and fungi play a significant role in determining community structure. However, these statistical associations across kingdoms are more difficult to infer than intra-kingdom associations due to the nature of the data involved using standard network inference techniques. We quantify the challenges of cross-kingdom network inference from both a theoretical and practical viewpoint using synthetic and real-world microbiome data. We detail the theoretical issue presented by combining compositional data sets drawn from the same environment, e.g. 16S and ITS sequencing of a single set of samples, and survey common network inference techniques for their ability to handle this error. We then test these techniques for the accuracy and usefulness of their intra- and inter-kingdom associations by inferring networks from a set of simulated samples for which a ground-truth set of associations is known. We show that while two methods mitigate the error of cross-kingdom inference, there is little difference between techniques for key practical applications including identification of strong correlations and identification of possible keystone taxa (i.e. hub nodes in the network). Furthermore, we identify a signature of the error caused transkingdom network inference and demonstrate that it appears in networks constructed using real-world environmental microbiome data.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube