Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Fused Lasso Improves Accuracy of Co-occurrence Network Inference in Grouped Samples (2509.09413v1)

Published 11 Sep 2025 in cs.LG and q-bio.PE

Abstract: Co-occurrence network inference algorithms have significantly advanced our understanding of microbiome communities. However, these algorithms typically analyze microbial associations within samples collected from a single environmental niche, often capturing only static snapshots rather than dynamic microbial processes. Previous studies have commonly grouped samples from different environmental niches together without fully considering how microbial communities adapt their associations when faced with varying ecological conditions. Our study addresses this limitation by explicitly investigating both spatial and temporal dynamics of microbial communities. We analyzed publicly available microbiome abundance data across multiple locations and time points, to evaluate algorithm performance in predicting microbial associations using our proposed Same-All Cross-validation (SAC) framework. SAC evaluates algorithms in two distinct scenarios: training and testing within the same environmental niche (Same), and training and testing on combined data from multiple environmental niches (All). To overcome the limitations of conventional algorithms, we propose fuser, an algorithm that, while not entirely new in machine learning, is novel for microbiome community network inference. It retains subsample-specific signals while simultaneously sharing relevant information across environments during training. Unlike standard approaches that infer a single generalized network from combined data, fuser generates distinct, environment-specific predictive networks. Our results demonstrate that fuser achieves comparable predictive performance to existing algorithms such as glmnet when evaluated within homogeneous environments (Same), and notably reduces test error compared to baseline algorithms in cross-environment (All) scenarios.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube