Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

GradAlign for Training-free Model Performance Inference (2411.19819v1)

Published 29 Nov 2024 in cs.LG

Abstract: Architecture plays an important role in deciding the performance of deep neural networks. However, the search for the optimal architecture is often hindered by the vast search space, making it a time-intensive process. Recently, a novel approach known as training-free neural architecture search (NAS) has emerged, aiming to discover the ideal architecture without necessitating extensive training. Training-free NAS leverages various indicators for architecture selection, including metrics such as the count of linear regions, the density of per-sample losses, and the stability of the finite-width Neural Tangent Kernel (NTK) matrix. Despite the competitive empirical performance of current training-free NAS techniques, they suffer from certain limitations, including inconsistent performance and a lack of deep understanding. In this paper, we introduce GradAlign, a simple yet effective method designed for inferring model performance without the need for training. At its core, GradAlign quantifies the extent of conflicts within per-sample gradients during initialization, as substantial conflicts hinder model convergence and ultimately result in worse performance. We evaluate GradAlign against established training-free NAS methods using standard NAS benchmarks, showing a better overall performance. Moreover, we show that the widely adopted metric of linear region count may not suffice as a dependable criterion for selecting network architectures during at initialization.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.