MUSE-VL: Modeling Unified VLM through Semantic Discrete Encoding (2411.17762v3)
Abstract: We introduce MUSE-VL, a Unified Vision-LLM through Semantic discrete Encoding for multimodal understanding and generation. Recently, the research community has begun exploring unified models for visual generation and understanding. However, existing vision tokenizers (e.g., VQGAN) only consider low-level information, which makes it difficult to align with language tokens. This results in high training complexity and necessitates a large amount of training data to achieve optimal performance. Additionally, their performance is still far from dedicated understanding models. This paper proposes Semantic Discrete Encoding (SDE), which effectively aligns the information of visual tokens and language tokens by adding semantic constraints to the visual tokenizer. This greatly reduces the amount of training data and improves the performance of the unified model. With the same LLM size, our method improved the understanding performance by 4.8% compared to the previous SOTA Emu3 and surpassed the dedicated understanding model LLaVA-NeXT 34B by 3.7%. Our model also surpasses the existing unified models on visual generation benchmarks.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.