Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Simplifying CLIP: Unleashing the Power of Large-Scale Models on Consumer-level Computers (2411.14789v2)

Published 22 Nov 2024 in cs.LG and cs.CV

Abstract: Contrastive Language-Image Pre-training (CLIP) has attracted a surge of attention for its superior zero-shot performance and excellent transferability to downstream tasks. However, training such large-scale models usually requires substantial computation and storage, which poses barriers for general users with consumer-level computers. Motivated by this observation, in this paper we investigate how to achieve competitive performance on only one Nvidia RTX3090 GPU and with one terabyte for storing dataset. On one hand, we simplify the transformer block structure and combine Weight Inheritance with multi-stage Knowledge Distillation (WIKD), thereby reducing the parameters and improving the inference speed during training along with deployment. On the other hand, confronted with the convergence challenge posed by small dataset, we generate synthetic captions for each sample as data augmentation, and devise a novel Pair Matching (PM) loss to fully exploit the distinguishment among positive and negative image-text pairs. Extensive experiments demonstrate that our model can achieve a new state-of-the-art datascale-parameter-accuracy tradeoff, which could further popularize the CLIP model in the related research community.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.