Papers
Topics
Authors
Recent
2000 character limit reached

Schemato -- An LLM for Netlist-to-Schematic Conversion (2411.13899v2)

Published 21 Nov 2024 in cs.LG and cs.AR

Abstract: Machine learning models are advancing circuit design, particularly in analog circuits. They typically generate netlists that lack human interpretability. This is a problem as human designers heavily rely on the interpretability of circuit diagrams or schematics to intuitively understand, troubleshoot, and develop designs. Hence, to integrate domain knowledge effectively, it is crucial to translate ML-generated netlists into interpretable schematics quickly and accurately. We propose Schemato, a LLM for netlist-to-schematic conversion. In particular, we consider our approach in converting netlists to .asc files, text-based schematic description used in LTSpice. Experiments on our circuit dataset show that Schemato achieves up to 76% compilation success rate, surpassing 63% scored by the state-of-the-art LLMs. Furthermore, our experiments show that Schemato generates schematics with an average graph edit distance score and mean structural similarity index measure, scaled by the compilation success rate that are 1.8x and 4.3x higher than the best performing LLMs respectively, demonstrating its ability to generate schematics that are more accurately connected and are closer to the reference human design.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.