SPICED: Syntactical Bug and Trojan Pattern Identification in A/MS Circuits using LLM-Enhanced Detection (2408.16018v1)
Abstract: Analog and mixed-signal (A/MS) integrated circuits (ICs) are crucial in modern electronics, playing key roles in signal processing, amplification, sensing, and power management. Many IC companies outsource manufacturing to third-party foundries, creating security risks such as stealthy analog Trojans. Traditional detection methods, including embedding circuit watermarks or conducting hardware-based monitoring, often impose significant area and power overheads, and may not effectively identify all types of Trojans. To address these shortcomings, we propose SPICED, a LLM-based framework that operates within the software domain, eliminating the need for hardware modifications for Trojan detection and localization. This is the first work using LLM-aided techniques for detecting and localizing syntactical bugs and analog Trojans in circuit netlists, requiring no explicit training and incurring zero area overhead. Our framework employs chain-of-thought reasoning and few-shot examples to teach anomaly detection rules to LLMs. With the proposed method, we achieve an average Trojan coverage of 93.32% and an average true positive rate of 93.4% in identifying Trojan-impacted nodes for the evaluated analog benchmark circuits. These experimental results validate the effectiveness of LLMs in detecting and locating both syntactical bugs and Trojans within analog netlists.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.