Papers
Topics
Authors
Recent
2000 character limit reached

The Graph's Apprentice: Teaching an LLM Low Level Knowledge for Circuit Quality Estimation (2411.00843v2)

Published 30 Oct 2024 in cs.LG, cs.AI, cs.AR, and cs.CL

Abstract: Logic synthesis is a crucial phase in the circuit design process, responsible for transforming hardware description language (HDL) designs into optimized netlists. However, traditional logic synthesis methods are computationally intensive, restricting their iterative use in refining chip designs. Recent advancements in LLMs, particularly those fine-tuned on programming languages, present a promising alternative. This work proposes augmenting LLMs with predictor networks trained to estimate circuit quality directly from HDL code. To enhance performance, the model is regularized using embeddings from graph neural networks (GNNs) trained on Look-Up Table (LUT) graphs, thereby incorporating lower-level circuit insights. The proposed method demonstrates superior performance compared to existing graph-based RTL-level estimation techniques on the established benchmark OpenABCD, while providing instant feedback on HDL code quality.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.