SHARP: Unlocking Interactive Hallucination via Stance Transfer in Role-Playing LLMs (2411.07965v5)
Abstract: The advanced role-playing capabilities of LLMs have enabled rich interactive scenarios, yet existing research in social interactions neglects hallucination while struggling with poor generalizability and implicit character fidelity judgments. To bridge this gap, motivated by human behaviour, we introduce a generalizable and explicit paradigm for uncovering interactive patterns of LLMs across diverse worldviews. Specifically, we first define interactive hallucination through stance transfer, then construct SHARP, a benchmark built by extracting relations from commonsense knowledge graphs and utilizing LLMs' inherent hallucination properties to simulate multi-role interactions. Extensive experiments confirm our paradigm's effectiveness and stability, examine the factors that influence these metrics, and challenge conventional hallucination mitigation solutions. More broadly, our work reveals a fundamental limitation in popular post-training methods for role-playing LLMs: the tendency to obscure knowledge beneath style, resulting in monotonous yet human-like behaviors - interactive hallucination.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.