Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Knowledge-Augmented Multimodal Clinical Rationale Generation for Disease Diagnosis with Small Language Models (2411.07611v4)

Published 12 Nov 2024 in cs.CL and cs.AI

Abstract: Interpretation is critical for disease diagnosis, but existing models struggle to balance predictive accuracy with human-understandable rationales. While LLMs offer strong reasoning abilities, their clinical use is limited by high computational costs and restricted multimodal reasoning ability. Small LLMs (SLMs) are efficient but lack advanced reasoning for integrating multimodal medical data. In addition, both LLMs and SLMs lack domain knowledge for trustworthy reasoning. Therefore, we propose ClinRaGen, enhancing SLMs by leveraging LLM-derived reasoning ability via rationale distillation and domain knowledge injection for trustworthy multimodal rationale generation. Key innovations include a sequential rationale distillation framework that equips SLMs with LLM-comparable multimodal reasoning abilities, and a knowledge-augmented attention mechanism that jointly unifies multimodal representation from time series and textual data in the same encoding space, enabling it to be naturally interpreted by SLMs while incorporating domain knowledge for reliable rationale generation. Experiments on real-world medical datasets show that ClinRaGen achieves state-of-the-art performance in disease diagnosis and rationale generation, demonstrating the effectiveness of combining LLM-driven reasoning with knowledge augmentation for improved interpretability.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.