Papers
Topics
Authors
Recent
2000 character limit reached

PMoL: Parameter Efficient MoE for Preference Mixing of LLM Alignment (2411.01245v1)

Published 2 Nov 2024 in cs.CL

Abstract: Reinforcement Learning from Human Feedback (RLHF) has been proven to be an effective method for preference alignment of LLMs and is widely used in the post-training process of LLMs. However, RLHF struggles with handling multiple competing preferences. This leads to a decrease in the alignment of LLMs with human preferences. To address this issue, we propose Preference Mixture of LoRAs (PMoL) from the perspective of model architecture, which can adapt to any number of preferences to mix. PMoL combines Mixture of Experts (MoE) and Low Rank Adaptor (LoRA). This architecture is innovatively applied to the research of preference alignment and has achieved significant performance improvement. The expert group soft loss is used to enable MoE with the ability to mix preferences. Through comprehensive evaluation by the reward model and GPT-4o, the experiment results show that PMoL has superior preference mixing capabilities compared to baseline methods. PMoL achieves better preference alignment with lower training costs.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.