Regularity and stability for the Gibbs conditioning principle on path space via McKean-Vlasov control (2410.23016v2)
Abstract: We consider a system of diffusion processes interacting through their empirical distribution. Assuming that the empirical average of a given observable can be observed at any time, we derive regularity and quantitative stability results for the optimal solutions in the associated version of the Gibbs conditioning principle. The proofs rely on the analysis of a McKean-Vlasov control problem with distributional constraints. Some new estimates are derived for Hamilton-Jacobi-BeLLMan equations and the Hessian of the log-density of diffusion processes, which are of independent interest.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.