Dynamic programming for optimal control of stochastic McKean-Vlasov dynamics
Abstract: We study the optimal control of general stochastic McKean-Vlasov equation. Such problem is motivated originally from the asymptotic formulation of cooperative equilibrium for a large population of particles (players) in mean-field interaction under common noise. Our first main result is to state a dynamic programming principle for the value function in the Wasserstein space of probability measures, which is proved from a flow property of the conditional law of the controlled state process. Next, by relying on the notion of differentiability with respect to probability measures due to P.L. Lions [32], and It{^o}'s formula along a flow of conditional measures, we derive the dynamic programming Hamilton-Jacobi-Bellman equation, and prove the viscosity property together with a uniqueness result for the value function. Finally, we solve explicitly the linear-quadratic stochastic McKean-Vlasov control problem and give an application to an interbank systemic risk model with common noise.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.