Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Local stability of McKean-Vlasov equations arising from heterogeneous Gibbs systems using limit of relative entropies (2110.02116v1)

Published 5 Oct 2021 in math.PR and math.DS

Abstract: A family of heterogeneous mean-field systems with jumps is analyzed. These systems are constructed as a Gibbs measure on block graphs. When the total number of particles goes to infinity, a law of large numbers is shown to hold in a multi-class context resulting in the weak convergence of the empirical vector towards the solution of a McKean-Vlasov system of equations. We then investigate the local stability of the limiting McKean-Vlasov system through the construction of a local Lyapunov function. We first compute the limit of adequately scaled relative entropy functions associated with the explicit stationary distribution of the N-particles system. Using a Laplace principle for empirical vectors we show that the limit takes an explicit form. Then we demonstrate that this limit satisfies a descent property which, combined with some mild assumptions shows that it is indeed a local Lyapunov function.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.