Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Congruences involving Delannoy numbers and Schröder numbers (2410.17522v1)

Published 23 Oct 2024 in math.NT and math.CO

Abstract: The central Delannoy numbers $D_n=\sum_{k=0}{n}\binom{n}{k}\binom{n+k}{k}$ and the little Schr\"oder number $s_n=\sum_{k=1}{n}\frac{1}{n}\binom{n}{k}\binom{n}{k-1}2{n-k}$ are important quantities. In this paper, we confirm [\frac{2}{3n(n+1)}\sum_{k=1}n (-1){n-k}k2D_kD_{k-1}\ \text{and}\ \ \frac 1n\sum_{k=1}n (-1){n-k}(4k2+2k-1)D_{k-1}s_k]are positive odd integers for all $n=1,2,3,\cdots$. We also show that for any prime number $p>3$, [\sum_{k=1}{p-1} (-1)kk2D_kD_{k-1}\ \equiv\ -\frac56p \pmod{p2}] and [\sum_{k=1}p (-1)k(4k2+2k-1)D_{k-1}s_k\ \equiv\ -4p \pmod{p2}\text{.}] Moreover, define \begin{equation*} s_n(x)=\sum_{k=1}{n}\frac{1}{n}\binom{n}{k}\binom{n}{k-1}x{k-1}(x+1){n-k}, \end{equation*} for any $n\in\mathbb{Z}+$ is even we have \begin{equation*} \frac{4}{n(n+1)(n+2)(1+2x)3}\sum_{k=1}{n}k(k+1)(k+2)s_k(x)s_{k+1}(x)\in\mathbb{Z}[x]. \end{equation*}

Summary

We haven't generated a summary for this paper yet.