Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some congruences involving powers of Delannoy polynomials (1412.7724v1)

Published 10 Dec 2014 in math.NT and math.CO

Abstract: The Delannoy polynomial $D_n(x)$ is defined by $$ D_n(x)=\sum_{k=0}{n}{n\choose k}{n+k\choose k}xk. $$ We prove that, if $x$ is an integer and $p$ is a prime not dividing $x(x+1)$, then \begin{align*} \sum_{k=0}{p-1}(2k+1)D_k(x)3 &\equiv p\left(\frac{-4x-3}{p}\right) \pmod{p2}, \ \sum_{k=0}{p-1}(2k+1)D_k(x)4 &\equiv p \pmod{p2}, \ \sum_{k=0}{p-1}(-1)k(2k+1)D_k(x)3 &\equiv p\left(\frac{4x+1}{p}\right) \pmod{p2}, \end{align*} where $\big(\frac{\cdot}{p}\big)$ denotes the Legendre symbol. The first two congruences confirm a conjecture of Z.-W. Sun [Sci. China 57 (2014), 1375--1400]. The third congruence confirms a special case of another conjecture of Z.-W. Sun [J. Number Theory 132 (2012), 2673--2699]. We also prove that, for any integer $x$ and odd prime $p$, there holds \begin{align*} \sum_{k=0}{p-1}(-1)k(2k+1)D_k(x)4 &\equiv p\sum_{k=0}{\frac{p-1}{2}} (-1)k {2k\choose k}2(x2+x)k(2x+1){2k} \pmod{p2}, \end{align*} and conjecture that it still holds modulo $p3$.

Summary

We haven't generated a summary for this paper yet.