Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Delannoy numbers and Schröder numbers (1009.2486v4)

Published 13 Sep 2010 in math.NT and math.CO

Abstract: The n-th Delannoy number and the n-th Schr\"oder number given by $D_n=\sum_{k=0}n\binom{n}{k}\binom{n+k}{k}$ and $S_n=\sum_{k=0}n\binom{n}{k}\binom{n+k}{k}/(k+1)$ respectively arise naturally from enumerative combinatorics. Let p be an odd prime. We mainly show that $$\sum_{k=1}{p-1}D_k/k2=2(-1/p)E_{p-3} (mod p)$$ and $$\sum_{k=1}{p-1}S_k/mk=(m2-6m+1)/(2m)*(1-((m2-6m+1)/p) (mod p),$$ where (-) is the Legendre symbol, E_0,E_1,E_2,... are Euler numbers and m is any integer not divisible by p. We also conjecture that $\sum_{k=1}{p-1}D_k2/k2=-2q_p(2)2 (mod p)$, where $q_p(2)=(2{p-1}-1)/p$.

Summary

We haven't generated a summary for this paper yet.