Arithmetic properties of generalized Delannoy polynomials and Schröder polynomials (2503.12748v1)
Abstract: Let $n$ be any nonnegative integer and [ D_n{(h)}(x)=\sum_{k=0}{n}\binom{n+k}{2k}{h}\binom{2k}{k}{h}{x}{k} \text{ and } S_{n}{(h)}(x)=\sum_{k=0}{n}\binom{n+k}{2k}{h}C_{k}{h}{x}{k} ] be the generalized Delannoy polynomials and Schr\"oder polynomials respectively. Here $C_k$ is the Catalan number and $h$ is a positive integer. In this paper, we prove that $$\begin{align*} & \frac{(2,n)}{n(n+1)(n+2)} \sum_{k=1}{n}ka(k+1)a(2k+1)D_{k}{(h)}(x){m}\in\mathbb{Z}[x],\ &\frac{(2,hm-1,n)}{n(n+1)(n+2)} \sum_{k=1}{n}(-1){k}ka(k+1)a(2k+1)D_{k}{(h)}(x){m}\in\mathbb{Z}[x],\ &\frac{(2,n)}{n(n+1)(n+2)} \sum_{k=1}{n}ka(k+1)a(2k+1)S_{k}{(h)}(x){m}\in\mathbb{Z}[x],\ &\frac{(2,m-1,n)}{n(n+1)(n+2)} \sum_{k=1}{n}(-1){k}ka(k+1)a(2k+1)S_{k}{(h)}(x){m}\in\mathbb{Z}[x]. \end{align*}$$ Taking $a=1$ will confirm some of Z.-W. Sun's conjectures.