Self-controller: Controlling LLMs with Multi-round Step-by-step Self-awareness (2410.00359v1)
Abstract: The applications of LLMs have been widely spread across all domains. However, the basic abilities such as the controllability of LLMs are still limited. To address this, we propose "Self-controller", a novel agentic framework bringing self-awareness into LLMs' reasoning logic. The core idea of this work is to maintain states based on the LLM's response, letting the LLM become self-aware of current status and think step by step in a multi-round chain-of-thought paradigm. Our experiment on the state of textual length has shown the controllability and effectiveness of the Self-controller. We further implement a binary search algorithm to accelerate the generation process based on the linearity and monotonicity of the textual length state. Another advantage of the Self-controller comes with DeepSeek's Context Caching technology, which significantly saves computational token consumption when a cluster of conversations shares the same prefix of context. Theoretically, we prove that in this scenario the extra time complexity is $O(c \log n)$. Results of the back-of-the-envelope estimation suggest that the token consumption of our method is no more than twice as much as that of the trivial single-round generation. Furthermore, our ablation study on word constraints demonstrates the Self-controller's consistent controllability across all foundation models.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.