Papers
Topics
Authors
Recent
2000 character limit reached

From Computation to Consumption: Exploring the Compute-Energy Link for Training and Testing Neural Networks for SED Systems (2409.05080v1)

Published 8 Sep 2024 in cs.LG and cs.SD

Abstract: The massive use of machine learning models, particularly neural networks, has raised serious concerns about their environmental impact. Indeed, over the last few years we have seen an explosion in the computing costs associated with training and deploying these systems. It is, therefore, crucial to understand their energy requirements in order to better integrate them into the evaluation of models, which has so far focused mainly on performance. In this paper, we study several neural network architectures that are key components of sound event detection systems, using an audio tagging task as an example. We measure the energy consumption for training and testing small to large architectures and establish complex relationships between the energy consumption, the number of floating-point operations, the number of parameters, and the GPU/memory utilization.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.