Papers
Topics
Authors
Recent
2000 character limit reached

Generalized geometric speed limits for quantum observables (2409.04544v1)

Published 6 Sep 2024 in quant-ph

Abstract: Leveraging quantum information geometry, we derive generalized quantum speed limits on the rate of change of the expectation values of observables. These bounds subsume and, for Hilbert space dimension $\geq 3$, tighten existing bounds -- in some cases by an arbitrarily large multiplicative constant. The generalized bounds can be used to design "fast" Hamiltonians that enable the rapid driving of the expectation values of observables with potential applications e.g.~to quantum annealing, optimal control, variational quantum algorithms, and quantum sensing. Our theoretical results are supported by illustrative examples and an experimental demonstration using a superconducting qutrit. Possibly of independent interest, along the way to one of our bounds we derive a novel upper bound on the generalized quantum Fisher information with respect to time (including the standard symmetric logarithmic derivative quantum Fisher information) for unitary dynamics in terms of the variance of the associated Hamiltonian and the condition number of the density matrix.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 5 likes about this paper.