Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
Gemini 2.5 Pro Premium
46 tokens/sec
GPT-5 Medium
16 tokens/sec
GPT-5 High Premium
17 tokens/sec
GPT-4o
95 tokens/sec
DeepSeek R1 via Azure Premium
90 tokens/sec
GPT OSS 120B via Groq Premium
461 tokens/sec
Kimi K2 via Groq Premium
212 tokens/sec
2000 character limit reached

The Geometry of Speed Limiting Resources in Physical Models of Computation (1611.09220v1)

Published 28 Nov 2016 in quant-ph

Abstract: We study the maximum speed of quantum computation and how it is affected by limitations on physical resources. We show how the resulting concepts generalize to a broader class of physical models of computation within dynamical systems and introduce a specific algebraic structure representing these speed limits. We derive a family of quantum speed limit results in resource-constrained quantum systems with pure states and a finite dimensional state space, by using a geometric method based on right invariant action functionals on $SU(N)$. We show that when the action functional is bi-invariant, the minimum time for implementing any quantum gate using a potentially time-dependent Hamiltonian is equal to the minimum time when using a constant Hamiltonian, thus constant Hamiltonians are time optimal for these constraints. We give an explicit formula for the time in these cases, in terms of the resource constraint. We show how our method produces a rich family of speed limit results, of which the generalized Margolus--Levitin theorem and the Mandelstam--Tamm inequality are special cases. We discuss the broader context of geometric approaches to speed limits in physical computation, including the way geometric approaches to quantum speed limits are a model for physical speed limits to computation arising from a limited resource.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.