Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Confidence Sets for $Z$-estimation Problems using Self-normalization (2407.12278v1)

Published 17 Jul 2024 in math.ST and stat.TH

Abstract: Many commonly used statistical estimators are derived from optimization problems. This includes maximum likelihood estimation, empirical risk minimization, and so on. In many cases, the resulting estimators can be written as solutions to estimating equations, sometimes referred to as $Z$-estimators. Asymptotic normality for $Z$-estimators is a well-known result albeit when the dimension of the parameter is asymptotically smaller than the square root of the sample size. This hinders statistical inference when the dimension is "large." In this paper, we propose a self-normalization-based confidence set bypassing the asymptotic normality results. The proposed method is valid in the full range of dimensions growing smaller than the sample size (ignoring logarithmic factors) and asymptotically matches the asymptotic normality based confidence sets when asymptotic normality holds. Our proposal represents the first such general construction of confidence sets in the full range of consistency of $Z$-estimators.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.